63 2v4 9307 P.82763

0CT-25-1994 11:16 DTIC-BR
RE PO RT _ Forin Appraved
DOCUMENTATION PAGE O e 1t
#Fybiic reporting bunden 10r this calecuoa gfumo. ion is e 3w ge § hour por e Tme for reviewing Instructions, seardhing existing data sour
Fathering “;‘f}‘““‘“@:‘%‘“‘.‘ pleting and re the Cotfection ot laformati sm:’ mmwmuqm:eamymwaﬁ"s.
Cavis ué‘h?am'/‘. ‘s’&“‘d 1204' Arhnqhtgﬁ?\mm&z and"t%w Oftfico «‘&i"m"&? gﬁ;;??amm ﬁedm«c{':ceroiea (@704-0188). Washlngt:n‘d BC 20 so:‘.us
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
4. YITLE AND SUBTITLE .) S. FUNDING NUMBERS

Software Reengineering Project Planning Guide,
Version 2.0.

6. AUTHOR(S)

Ms Tamra Moore, editor

2\ 1 8. PERFORMING ORGANIZATION

7. PERFORMING ORGANIZATION NAME(S) AND ADDR[SS(ES
R, ot REPORT NUMBER

DISA/JIEO/:.= CFsw
701 South Courthouse Road
Arlington, Va 22204-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND

w.yspousonmamomonm
-}~ AGENCY REPORT NUMBER

same as above

11. SUPPLEMENTARY NOTES
Field 25 should contain the identifier CIM (Collection), as
detailed in A. Washington DTIC-0CS IOM, dated April 11, 1994.

12a. DISTRIBUTION / AVATLABEITY STAYTEMENT i i 12b. DISTRIBUTION CODE

Available for public distribution unlimited .

e o
3. ABSTRACY (Maximum 200 words)

This document assists project managers in developing a plan to
implement software reengineering for AISs. Developing a solid
project plan is the first step of any software engineering
process, including software reengineering. The intended audience
for the guide is any organization within DoD tasked to

reengineering AISs.

9950123 09

14, SUBJECT TERMS] i 15 NUMBFA OF PAGES
reengineering, reverse engineering, software ;
engineering, maintenance, IDEF 16, PRICE CODE

I T T U T Y T v i W Ty Ty e TR BT "t v Ty Ty vy R ETIIEIr——. 1

17. SECURITY CLASSIFICATION [18. SECURIV CLASSIFICATION | 1. SECURITY CLASSIICATE [Z0. LIMITATION OF ABSTRAGT |
OF REPORT STV LS Py ON | Z0. LIMITATION OF ABSTRAGT
unclassified unclassified n fied

NSN 7540-01-280-5500 Standard Form 298 (Rev, 2-89)

N&crbcd by ANSt Sid. £39-18
298-102

Defense Information Systems Agency
Joint Interoperability and Engineering Organization
Center for Software
701 South Courthouse Road; Arlington, VA 22204-2199

Software Reengineering Project
Planning Guide

VERSION 2.0

February 1994

Prepared by:

Software Systems Engineering Department
Software Engineering Technology Division

FOREWORD

1. The Software Reengineering Planning Guide is intended for use by all Departments and
Agencies of the Department of Defense. This Guide assists project managers in developing a
plan to implement software reengineering for automated information systems (AISs).
Developing a project plan is the first step of any software engineering process, including
software reengineering. A software reengineering process is defined in the Software Systems
Reengineering Process Model [CFSW94]. This process begins with project planning
described in the activity called Define Project. The Software Reengineering Project Planning
Guide provides guidance for performing tasks described in the Define Project activity.

2. Beneficial comments (recommendations, additions, deletions) and any pertinent data which
may be of use in improving this document should be addressed to:

Defense Information Systems Agency
Joint Interoperability and Engineering Organization
Center for Software
Software Systems Engineering Department
: 701 South Courthouse Road, Arlington, VA 22204-2199
3. The DoD Components may obtain copies of this document through their own publication
channels. Defense Contractors, and other Federal Agencies may obtain copies from:

Defense Technical Information Center (DTIC)
Building 5 Cameron Station
Alexandria, VA 22304-4301
Commercial Telephone: 1-800-225-DTIC (1-800-225-3842)

4. This Guide is not intended to specify or discourage the use of any particular software
engineering project planning method. The Guide adapts current project management planning
strategies for software engineering to provide a format and define the contents of the software
reengineering project plan.

5. The intended audience for the Software Reengineering Project Planning Guide is any
organization within DoD tasked to reengineer AISs. This Guide must be appropriately
tailored by the project manager to ensure that the necessary and cost-effective activities of
software reengineering are implemented. Assistance in tailoring this document is available
from the Software Reengineering Program located at the address in paragraph 2 of this
Foreword.

i

6. The Center for Software' is chartered to support the Office of the Assistant Secretary of
Defense (OASD) for Command, Control, Communications, and Intelligence (C’I) by
providing information management technical services to the DoD community. The services
are an integral part of the Corporate Information Management program, a DoD-wide effort to
streamline business operations and processes which will help improve the design of
cost-effective, standard information systems. Software reengineering emerges as a strategy
for bringing the cost of developing and maintaining software under control. The need for a
comprehensive plan to apply software reengineering technology is the driving force behind
the Software Reengineering Program. The Software Reengineering Project Planning Guide
will assist managers in planning and implementing software reengineering technology.

Accesion For

NTIS CRA& E
DTIC TAB
Unannounced O
Justification

By
Distribution |

Availability Codes

) Avail and/or
Dist Special

A-1

'The Center for Software includes the organization formerly named the Center for
Information Management in the Defense Information Systems Agency's Joint Interoperability and
Engineering Organization.

il

TABLE OF CONTENTS

SECTION PAGE
FOREWORD .. . e il
TABLE OF CONTENTS e e e v
LIST OF FIGURES e e \%
LIST OF TABLES S v
1. INTRODUCTION . .. e e e e e e e e 1
L1 SCOPE .ttt]
1.2 Standards 5
I3 OVeIVIEW . ottt e e 6
2. DEFINITIONS ... e e e e 8
3. SOFTWARE REENGINEERING PROJECT PLAN 10
3.1 State ObjJective(s) . . .ot i 10
3.2 Baseline System(s). 17
33 List ACtiVitieso oot 17
3.4 Map Activities To Personnel 23
3.5 Map Activities To Resources 23
3.6 Schedule Time For Each Activity 24
3.7 Estimate Costs Per Activity 24
3.8 List Risks Which Could Impact Plan. 25
3.9 Plot Information Relative To Time 27
3.10 Mark Critical Success Factors On Timeline 29
3.11 Plan to Capture Lessons Learned 30
3.12 Plan to Measure and Monitor 30
REFERENCES

Appendix A Project Planning Templates

v

LIST OF FIGURES

Figure Page
1. Reengineer System e 2
2. Define Project e 3
3. Define Reengineering Project Plan 4
4. Primary Elements of Software Reengineering 7
5. Goal/Question/Metric Paradigm 14
6. Example #1 Using GQM Paradigm 15
7. Example #2 Using GQM Paradigm 15
8. Example #3 Using GQM Paradigm 16
9. Sample Gantt Chart for Software Reengineering Project Planning 28

LIST OF TABLES

Table Page
3-1. Deliverables and Consumables for Define Project Activities 2
3-2. Deliverables and Consumables for Reverse Engineer Activities 22
3-3. Deliverables and Consumables for Forward Engineer Activities 23

(This page was intentionally left blank.)

Vi

1. INTRODUCTION

1.1 Scope. This document provides a format and describes the contents of software
reengineering project plans. A project plan is the controlling document for managing
software reengineering projects by defining both technical and managerial processes for
accomplishing the goals of the project. This document utilizes proposed software enginéering
project planning strategies for outlining the structure and describing the contents of project
plans for software reengineering applications. Sources for these strategies are listed in the

References section of this document.

This document can be used to plan any project utilizing software reengineering
technology. The main purpose of this document is to facilitate the software reengineering
process as defined in the Software Systems Reengineering Process Model [CFSW94]. This
process begins with initial project planning as described in the activity called Define Project
(Figure 1). The primary product of the Define Project activity is the Reengineering Project
Plan. Define project is composed of three high-level activities, including Define Objectives,
Identify Baseline, and Define Reengineering Project Plan (Figure 2). The Define
Reengineering Project Plan activity is performed in four parts, including Develop
Reengineering Strategy, Identify Methodologies and Tools, Allocate Resources, and Produce
Reengineering Project Plan (Figure 3). Chapter Three describes the relationship to the
activities in the Software Systems Process Model to the structure and contents of the project

plan.

. , i
N vy Bd :zaquny waysAs assutbuasy :araTL | 01D / 0¥ ®PON
!
W 2 W 471 IN
AnNASEyY] uALOD GO wea] aforgy i %001
, 180]0pOR Ny uoy; I .
|) ‘
i 8 '
! s r r W H i
i | ; | i
[U, _, _ u
. i

s2uduy premioy f '

,
i ﬁ.) !
h .
{ | N ,
! i i ; |
e ! | i
G ~ |
m ! f1onposg pasduiBug Iy !
il i . .
Af i i ‘ !
ol] .
r ” m 3dudug amasasy !
| |
; a
i = x i - 3 < - -
X k * v
: i .
: | i
i ‘ ! J
! T
o _
suauodwo) Siv vo:__ssY sy wkpay knasig O
L ! | wofod uy3q
unjd 130ug JuuaBuzay® nassy aqesnay’ i
10 ¢ L , i
${0au0D 01 535ury) pap g WANSAS UOHFULO) U] pAIRLIOINY S €
. ;
A
€0 v osnay 2iEpipusy nuxuambay ssowsng? vl
= = £ 3 r 3 3 x
i " '
— L ; ! !
_ v o
— N\ M : H !
H A3otouyda] n:..:uucmm_._unx,u_a-r_!< ‘
: i M
$UPPIND SIS N0 3y | i
SI3PO SYIO MY [$1U423 i
19poW sudiaug qog~~ ' SUCHBIUI 32MOsI Y i 1
' H i i P
L) j20] ¥ 0] 12
UOTIITIAN | X poigHiITIAWIL 0T 68L9S¥PEZT 590N
PpUIWWODIY !
Ll 8 (#532)
«38-0L. . 33ead : Z:a9y bButassutbussy swaisAs M/s :3Idaloiag 8IeM3JOS 203 II3UID

3IX83u0) : aava ¥IAVIY | Buryzom ; v6/61/21:93ea MS4D/0IIL/VSIQ :IOUany | 13y pasn

Figure 1. Reengineer System

¢ Bd :zeoqun

N

3o0sfoag aurzadq :2TITL

I/ Y

:9poN

24! W [14] N S

] !] i
-o._mo_ovoﬁuZ/Ju 5|00, ._./‘_
uRa g 13foud: sauoysodaywy] .
| .
ampruiseyu] uruo);dwo)’ J
} | !
(_ ;
%] “ %
13 !] !
L 4 H
132 |
| sionpoud paseauiBug 13437 91
.]
Sionposg Sug Ady “|3 sishjeuy kA s sy’ !
1 ' !
aujaseq 01 saduey)y vovcuchr_o,uufzwﬁ p Bl
7 ! !
Q0 03 s23uryD pap e 300forg BuuaauiBuaoy uysq | A
€0 ¢ 7 : I
ueld 103fosd FunaauiBuaay i Vi
4 !
w¢ 5[01u07) 0) 533URYD PIPUSUILIOIYS i _
: A) _ [
; h3UGO “BImIN { :
; M [.
i Uy i '
— _ i
_ H
i
auyaseg Aguuap] |
LR P i e——r——" fHusuodwoy) STy paulaseg” _
!
T Lo i
nv i
s3an330q i
1
_)M 1 suswannbay ssauisng? i
* _
v \ 3 vl
SOURW 8340900 My Asoy SsABUY Kj1qiseas
i — > €l
i SsIy Ty IqEIndY’
1
| 10 ¢ ~ . Fou
v s1awsy asnay aEpipue)’ WSS UOHELLIOU] PATWAINY- “
| ToT m
! | ‘ t
! T T
. - i i
! _ ASojouys 1, BuusauiBusay aqe(seav)
i Y,] i !
! L PaL) t
| j ﬂ,
: 12popy asud. ! ;
5] 1 i
“ uoTIeITIqNg | X 0€:Gp: T oWTY 0T 68LYISYECT I83ION| :
: Popusumosay i (Ms3d)
! «3F-0Le 3jeaq Z A9y Butaosuibusey sweisAs M/s :309foaqg: 9IVM]JOS IO0F IIUID ”
i ; i !
H 3IXBIUCH : a1va qIAVIY Bupyzom v6/61/21:@3ea MSJD/0ILL/NSIA "Monu=¢w 23y pasn

Figure 2. Define Project

3

0T Bgd :asquny ueld 3129foag Butassurbuasy auUT3IaQ IBTITL S1D / £1¥ 19pON
W [37
I i
weaf 1304d~ ! 8100w
$3u0350dy !
r Y l Y
; r T : T) :
!] : r : — :
- - - ! i ; T T ! i :
v i : ; ' !
urjd w3fosd o mco_myﬂ. 1 ; Y oy sausng? tl !
: . i ! i
r0 ¢ $2A122(q0 01 328wy popuauALIdIY T . H | i i
10 ¢ : “ : j i !
" urg w3faig BunaauBuasy” ' ! \ ! ‘ i
P us|d 133f0.g BuuasuiBuaay 3onpord . ; ! I
50 ¢ Juljaseq o) saduey)) papuauicday? i i
! I I
: - M _ , , ; ” i
: i i : :
| e 2 _ ; “ v !
W s = | : [: ,
! ! - . ! ! i ; :
. | [T334] i , . |
. i fﬁlo\o:-otx 13f01d 01 WOISIAIY . ﬁ ;
; : 1
W - m _ ,” ﬁ ; ,
W il ! , : i i :
| $30m082y Ne0[|Y _ H : v |
P) ; _ | W ! !
I ‘ | | i i
W ! unos3y -uu_.o.ww. \al ! | ' i !
' | | ! :
sl r ! : i 7 : i
v { . - L 2 : ; .
" | ey ! : |
M t | _‘.ﬂ,oe.r puv 53130]0pOYI}N Pasodolg 0 UoISIAIY |
i 1
| | o |
I f 3100, pum $3,3010pONIIN A51opi , ! _
o $1001. pus s3y80joporpa powodosg - [ﬁ
¥ | ,
1 T I
. i 0y
[n
b !
' : |
i , 1 { . K3areng SuusawFuaay o1 uoisiady
[N ' i
= ! It
I f ! m | T manpoug Sug sy “|3g sisAjruy? 9l
i | I\ : N ABang SuuaduiSuasy dojaasg N a
gﬁ ; t] AZaieag walalyg Suusauduaay e d :
< i I |
io¢ 51955y 950y NEPIpUTY ! i : w Y B3RO0 U " 1
&) : \ i
0 Scawon e sa3ury)) popuNLL0IYF] i : ynsay sisAEuy Kijiqisea s’ st |
| ,, ! j = - * = i
i i i !) : i H :
! | —) ! :
; { : ! : ;
m m “ ; SUWBUYNY (RIS, T '
: | w0 L d QTR 13pop asudianug gogas : 1
; PUPPING PG ANOJ B Y suonnwI NExluzJ i swauodwio) STV paulfsTg-~ SPPOW 0~
| ! : !
! 90 0 [} U 9 (] (3
; uorIewdTIAN | X LZT:0S3 T aWTL 0T 68BLISVELZT S9ION]
' papuBuRIODaY i ! (M54D)
«3JE-0L.W ; 1Ivaq i Z:A9d bButisdutbussy SwIISAS M/S 3defoxg _ @IeM]33JOS I03J IIIUB)D
IX83U0Y i 3INg ¥3IAVIY Suryaom ; v6/61/21:@3%g MSJO/0JIL/NSIG :Ioyany: 13V _pasn

Project Plan

ineering

4

Figure 3. Define Reeng

This document provides a format for the software reengineering project plan.
Appendix A includes templates for developing a project plan based on the guidance provided
in this document. Individual DoD organizations may have a standard format for all project
plans. The reader should use this as a guide for planning software reengineering efforts,” and
should incorporate the guidance provided in this document into existing organizational

standards concerning the structure and format of project plans.

This document describes the minimal set of elements which should appear in a
software reengineering project plan, but the content of the plan is not limited to these
elements. Individual organizations and projects should use this as a guide for planning
software reengineering efforts, and should investigate additional elements for inclusion in the

plan as required by these organizations.

Methodologies and commercial products are available to assist project managers in
automating many of the activities described in this planning guide. Configuration
management and project planning tools should be investigated for automating and

documenting the work during this activity.

1.2 Standards. The following government and industry standards should be consulted when

applying the guide. The latest revisions apply.

[1] DoD-STD-1703(NS), Software Product Standards.

[2] DoD-STD-2167A, Defense System Software Development.

[3] MIL-STD-7935A, DoD AIS Documentation Standards.

[4] MIL-STD-SDD, Military Standard for Software Development
and Documentation.

[S] ANSIIEEE Std 729-1983, IEEE Standard Glossary of Software

Engineering Terminology.

[6] ANSVIEEE Std 1058.1-1987, IEEE Standard for Software Project

Management Plans.

[7] ANSUVIEEE Std. 1061-1992, Standard for a Software Quality Metrics Method

1.3 Overview. The reengineering project plan has the three main objectives of softwarc
engineering project planning: to (1) communicate the scope and resources; (2) define cost and
schedule; and (3) define the overall approach [Pres87, p131]. The reengineering project plan

provides guidance on how the project is progressing, what resources are available and when

these resources will be used.

General principles for management apply in software reenginecring projects. The

following general management principles were adapted from [Blum92, p429]:

Understand the goals and objectives for the reengineering effort
Understand the constraints which could impact the reengineering effort
Plan to meet objectives within these constraints

Monitor and maintain the project plan

Make adjustments as necessary

Preserve calm, productive, and positive work environment

The reengineering project plan documents the information supporting these principles.
The plan outlines what has to be done (the activities) and the best order for these activities to
be performed. Short term, clear objectives will motivate personnel [Youl90, p18]. Well-

defined, intermediate tasks will assist the project manager in determining how well the project

is progressing.

The project plan documents estimated costs, including staff, training, and computer

resources. The plan identifies the number and skills of personnel needed. Training on

6

methodologies and tools for software reengineering, as well as modern software engineering
should be provided for all personnel. Resources are identified based on availability and cost.

Personnel should have access to these resources to perform the software reengineering.

The expected completion date of the software reengineering project is projected in the
plan, including interim milestones and associated products. The completion of these
milestones and the quality of the products produced may indicate how the project is

progressing.

The primary elements of a software reengineering project listed below are adapted

from Whitten's software engineering elements [Whit90, pS]:

product
discipline schedules objectives
people: communicating processes: quality activities: training
education tracking specifications
priorities ease of use
informal testing

Figure 4. Primary Elements of Software Reengineering

Successful planning for software reengineering manages these key elements. The
Software Reengineering Project Planning Guide assists project managers in establishing a plan

for managing these elements and achieving the goals of the project.

2. DEFINITIONS

A set of definitions are provided for clarification. These terms are used throughout

the document and are defined as follows. These definitions are provided by the ANSI/IEEE

Std 1058.1-1987, IEEE Standard for Software Project Management Plans unless othcrwise

stated.

activity: a major unit of work to be completed in achieving the objectives of a
software project. An activity has precise starting and ending dates, incorporates a set
of tasks to be completed, consumes resources, and results in work products. An

activity may contain other activities in a hierarchical manner.

baseline: A work product that has been formally reviewed and agreed upon, and that
can be changed only through formal change control procedures. A baseline work

product may form the basis for further work activities.

legacy system: Other automated information systems (AISs) that duplicate the support

services provided by the migration system, and are to be terminated [DSD93].

migration system: An existing AIS, or a planned and approved AIS, that has becn

officially designated as the single AIS to support standard processes for a function

[DSD93].

software project management plan: The controlling document for managing a softwarc

project. A software project management plan defines the technical and managerial
project functions, activities, and tasks necessary to satisfy the requirements of a

software project, as defined in the project agreement.

task: The smallest unit of work subject to managerial accountability. A task is a well-
defined work assignment for one or more project members. The specification of work
to be accomplished in completing a task is documented in a work package. Related

tasks are usually grouped to form activities.

work package: A specification for the work to be accomplished in completing an
activity or task. A work package defines the work product(s), the staffing
requirements, the expected duration, the resources to be used, the acceptance criteria
for the work products, the name of the responsible individual, and any special

considerations for the work.

work product: Any tangible item that results from a project function, activity, or task.
Examples of work products include customer requirements, project plan, functional
specifications, design documents, source and object code, users manuals, installation
instructions, test plans, maintenance procedures, meeting minutes, schedules, budgets,

and problem reports. Some subset of the work products will form the set of project

deliverables.

3. SOFTWARE REENGINEERING PROJECT PLAN

This chapter provides a format and defines the contents of the software reenginecring
project plan. The information provided in this guide should be tailored to accommodate any
existing standard for project planning. For the purposes of providing guidance on how to
construct a project plan, the following structure is provided for the reader and will be used
throughout the remainder of this document. The format of the project plan is structured into

twelve parts:

[am—y

STATE OBJECTIVE(S)

IDENTIFY BASELINE SYSTEM(S)

LIST ACTIVITIES

MAP ACTIVITIES TO PERSONNEL

MAP ACTIVITIES TO RESOURCES
SCHEDULE TIME FOR EACH ACTIVITY
ESTIMATE COSTS PER ACTIVITY

LIST RISKS WHICH COULD IMPACT PLAN
PLOT INFORMATION RELATIVE TO TIME
MARK CRITICAL SUCCESS FACTOR POINTS
ITERATE

MEASURE AND MONITOR

e e A

— et
S

This structure identifies the minimum set of elements which should appear in a
reengineering project plan. The following describes each part in detail, giving examples
where appropriate. The related activity or activities in the Software Systems Reengineering

Process Model are identified where necessary.

3.1 State Objective(s). The objectives for the software reengineering project are those

project level goals which motivate the software reengineering project. One objective may be

10

the consolidation of multiple systems or alternate configurations of the same system. This
requires the integration of requirements from multiple sets of customers with varying neéds.
Identifying the customer is essential to insuring all personnel who may potentially be affected
by the reengineering are identified and the impact on these individuals understood. It is also
important to consider future user support and training on the reengineering system. Future
support for the reengineered system should be outlined and preparations made to provide
support to the users, including trouble reporting, corrections, and subsequent enhancement

plans.

Identifying the objectives of the reengineering effort can be difficult. The activity of
defining these objectives is described in the Software Systems Reengineering Process Model
as Define Objectives [CFSW94]. Often the objectives are stated in terms that are too vague
or general. Objectives that are too general make proving the success of the reengineering
project very difficult. It is important that concrete and measurable objectives are identified

and documented in this part of the project plan.

The objectives must identify and describe specific milestones for achieving critical
success in the project. The objective statements should distinguish the goals of the various

players in a reengineering project, including users, maintainers, and reengineers.

3.1.1 Stating Objectives from Alternative Perspectives. The reengineering project may have
many objectives depending on the different people involved with the project. Three key

players are the users, maintainers, and the reengineers.

The user's objectives for reengineering concern using the system and may include
enhancing the user interface, changing the functional requirements, and improving the
performance of the system. The known functional requirements of the existing system may
be described in a user guide or other available documentation. The users of the system énd
the maintainers may be interviewed for defining the system's functionality from their

perspective. All of the individuals who interface with the system should be consulted and

11

their view of the systems functionality documented. The true functionality of the system,
however, may not be known until the completion of the reverse engineering. It is important
to document the initial perceived functionality of the system, understanding that this may not
be an exact match to the true functionality as determined through the reengineering effort.
The perceived functionality is initially documented from the viewpoint of both the maintainers

and the users of the system.

Maintainers have objectives for supporting the system better, including decreasing

maintenance costs and the ability to modify the system faster.

The reengineers may have objectives for experimenting and proving software
reengineering technology concepts, including utilizing a new strategy or automated tool. The
reengineered system will operate in an environment which may have certain constraints that
drive its design and implementation. These environmental constraints should be understood
and addressing these constraints is an objective. Target system configuration should be well-
defined and any potential implications it poses addressed as an objective. Applying the
appropriate standards, regulations, policy, and guidelines throughout the software

reengineering effort is also an objective.

3.1.2 How to State Concrete Objectives. The following examples provide some insight into
stating objectives in the project plan. A common objective for many software reengineering
projects is the desire to "decrease maintenance costs." The objective statement would be as

follows:

"An objective of this reengineering project is to decrease maintenance costs by twenty

percent."”

This statement identifies the objective and also attaches a measurable quantity to the

goal.

12

Another example is the high-level goal to "maximize customer satisfaction." An

appropriate objective statement might be as follows:

"An objective of this reengineering project is to address seventy-five percent of open

critical and serious problems."

A final example is the desire to "improve software productivity." This goal could be

stated as an objective in the project plan as follows:

"An objective of this reengineering project is to decrease time spent on making each

change by a minimum of fifty-percent."

3.1.3 How to State Measurable Objectives. The ability to focus high-level goals into
measurable objectives is provided by Basili's Goal/Question/Metrics (GQM) Paradigm |
[Basi93]. In essence, this paradigm defines a process for turning high-level goals into
concrete, measurable objectives. These objectives also require an understanding of metrics
and measurements. Starting from the high-level goal, consider questions concerning this goal
and what it means. From these questions it may be easier to identify metrics which quantify

these questions and succeed in identifying more concrete objectives.

The GQM Paradigm is graphically represented using a tree (Figure 5) which reflects
the relationship between the goals, questions, and metrics. A single metric may address more
than one goal. Multiple metrics may support a single goal. There may be relevant questions
which cannot be quantified, but should still be included in your objectives statements. One of

the biggest mistakes in establishing goals, questions and metrics is that an organization tries

13

to take on too many instead of narrowing the field. The key is understanding the implications
these metrics have on your organization's ability to meet its goals. Decide which ones arc
important. Measures which cost more to measure than their value are probably not good
candidates. A metric which supports more than one goal might be a good candidate. A
metric which only supports one goal, but is easily measured and its implications on the

organization are well-understood might be a better candidate.

GOAL 1 GOAL 2

SN I

QUESTION QUESTION QUESTION QUESTION QUESTION
1 2 3 4 5
METRIC METRIC METRIC METRIC METRIC METRIC
1 2 3 4 5 6

Figure 5. Goal/Question/Metric Paradigm

3.1.3 Examples Using the G/Q/M Paradigm. The GQM Paradigm can be applied to the three

previous examples to show how measurable objectives are identified.

Increasing software productivity is a goal desired by all organizations (Figure 6). The
first step in achieving this goal is establishing a process for measuring productivity in your
organization. Understand what is the current productivity, including breaking down tasks
into small enough jobs that each can be measured. Suggested metrics for measuring
productivity include the number of non-commented source statements (NCSS) or source lines
of code (SLOCs) . This metric is often measured as it relates to some unit of time, such an
engineering months. Engineering months are essentially staff months, but are focused away
from administrative or managerial staff months. Another measure for productivity is the

number of engineering months required to perform certain phases in a project.

14

GOAL: Toincrease software productivity

QUESTION: What is current productivity?
How do we measure productivity?

How much time do we spend doing what?

METRIC: NCSS/Eng-mo
Eng-mo/phase

Figure 6. Example #1 Using GQM Paradigm

Maximizing customer satisfaction is another goal desired by all organizations (Figure
7). The first step in achieving this goal is establishing a process for measuring customer
satisfaction in your organization. Understand whether your organization is meeting this level
of customer satisfaction. Suggested metrics for measuring customer satisfaction include a raw
number of open and critical problems. These problems should be categorized in some way to
support you organization. The number of problems and how your organization resolves them
is directly related to customer satisfaction. The problem resolution index can be used to
measure the problem solving capability of your organization. This index is measured in two
ways: (1) the number of problems resolved over some unit of time; and (2) the average time

it takes to resolve a problem.

GOAL: Maximize customer satisfaction

QUESTION: What indicates customer satisfaction?
How are we doing?

METRIC: Open critical and serious problems
Problem resolution index

Figure 7. Example #2 Using GQM Paradigm

15

Reducing maintenance costs is probably the most important goal for any organization
(Figure 8). The first step in achieving this goal is establishing a process for measuring
maintenance costs in your organization. Understand what the current maintenance costs arc
for your organization. Suggested metrics for measuring maintenance costs include
personmonths and dollars. Personnel can include labor charges for engineers, administrative
assistants, and management. Dollars can include one-time costs associated with equipment
purchase, material, or travel; or may be on-going charges for computer use and building space

rental.

GOAL: Reduce maintenance costs

QUESTION: What are current maintenance costs?
How do we measure maintenance costs?

METRIC: personmonths
dollars

Figure 8. Example #3 Using GQM Paradigm

The GQM Paradigm is useful in identifying concrete objectives which can be mapped
to measurable quantities. The ability to measure the success of the software reengineering
effort starts with early planning of statements of expected results. The comparison between
predicted results and achieved results at the end of the project will enable the proof of success
to be established. Benchmarks of current system performance, as well as current cost of
current maintenance will be measured against those of the reengineered system for

improvement status.

16

3.2 Baseline System(s). Identify the configuration items which comprise the current

automated information system. This is not an analysis activity, simply an inventory of
existing system components. These items include, but are not limited to: any associated
documentation, application software, data, and technical infrastructure. The activity of
identifying the baseline is described in the Software Systems Reengineering Process Model as

Identify Baseline [CFSW94].

Baselining the system is the first step in performing benchmarks. Benchmarks are an
essential step in any software engineering activity for providing measures to plan and
implement software system improvements. Baselining the system is also necessary to begin
preparations for migrating the current system implementation to a different computer

hardware platform, or integration with other software systems and commercial products.

Baselining the system means to identify existing AIS configuration items, including

the application software, data, technical infrastructure, and the associated documentation.

3.3 List Activities. The high-level activities are outlined in the Software Systems
Reengineering Process Model [CFSW94]. In this step, these activities should be broken down
into lower level activities which can be costed and mapped to resources, including computer
and personnel resources. These activities are then ordered in sequence where possible and

potential parallelism identified.

3.3.1 List Activities. The high-level activities outlined in the Software Systems
Reengineering Process Model should be further decomposed based on the particular needs of

the project.

For example, Analyze Documentation is one of the subactivities of the activity called
Reverse Engineer. In a sample software reengineering project the Baselined AIS Components

included two user's guides, an original requirements specification document, and an electronic

17

help system. The lower level activities were called: (1) Analyze User Guide #1, (2) Analyze
User Guide #2, (3) Analyze Requirements Specification Document, (4) Analyze Electronic

Help System, and (5) Integrate Analysis Results.

Another example is the breakdown of Analyze Technical Infrastructure into five sub-

activities. These subactivities are:

(1) Analyze Existing OS Support Functions

(2) Analyze Existing Hardware Dependencies

(3) Analyze Existing External Interface Requirements
(4) Analyze Existing Commercial Components

(5) Analyze Existing Communications Requirements
The following outline lists the software reengineering activities defined in the Softwarc
Systems Reengineering Process Model. This outline is the starting point for identifying the

sub-activities for an individual project.

Software Reengineering Activities

1. Reverse Engineer 2. Forward Engineer
A. Analyze Documentation A. Analyze
B. Analyze Application Software B. Design
C. Analyze Data C. Build
D. Analyze Technical Infrastructure D. Integrate
E. Reconcile Extracted Products E. Test and Evaluate

18

When listing each activity, identify the expected product resulting from the activity
[Youl90, p20]. Each activity should have one product which must be clearly defined and
measurable. The minimal set of products expected from the reengineering effort includes
those work products specified by the applicable DoD documentation standards. The
documentation requirements specified in the MIL-STD-SDD, Military Standard for Software
Development and Documentation represents a consolidation of those products specified in
DoD-STD-1703(NS), Software Product Standards; DoD-STD-2167A, Defense System
Software Development; and MIL-STD-7935A, DoD AIS Documentation Standards. These
products are the Consolidated Data Item Descriptions (DIDs) outlined below.

Consolidated Software Design Document (C-SDD)
Consolidated Software Plan (C-SP)

Consolidated Software Requirements Document (C-SRD)
Consolidated Software Support Document (C-SSD)
Consolidated Software Test Document (C-STD)
Consolidated Software User/Operator Manual (C-SUOM)

The Consolidated DIDs are composed of individual DIDs which are also defined in
the MIL-STD-SDD. For the purposes of the Software Reengineering Project Planning Guide,
only the Consolidated DIDs are discussed. The individual DIDs would be broken down as
defined in MIL-STD-SDD.

The following tables list the deliverables and the consumables for the software
reengineering activities Define Project (Table 3-1), Reverse Engineer (Table 3-2), and
Forward Engineer (Table 3-3). Each activity is responsible for producing these deliverables;
consumables are those products which the activity needs to complete its task. The
Consolidated DIDs are mapped to each of the responsible activities in the deliverables

column.

19

174

$10npoid paladulduyg 251949y
S3]1qRIdAI[(] SisA[euy
$9AN02{Q0

siuauodwo)) SV pauijaseg

$20In0say 109f01 -
S[00 1 pue sa30[opoyIdN pasodoly -
A31ens 190fo1g Suuosuiduady -

ueld 192014 Sundouidusay

ueld 109lo1d Fuuasuiduaay auyag

auljaseq 03 saguey)) PIpUSWWOIDY
SOIQRIDAL[D(] SISA[euY

$1ONPOL,| PAISIUITUL ISIOADY
S1|nsay siskjeuy AJ1j1qisea,]

SIvV

sjuswaInboy ssaursng

2IN)ONIISEIJU] [BIIUYD2] BunsIXy -
BlE(] Sunsixy -
atemyos Suysixy -

siuauodwo)) Sy pauljoseg

sujaseq Ajnuspj

SOA103[gQ 03 sadueYy)) popULWWLOIFY
s nsay sisAjeuy Ajiqises]

SIv
sjuawisInbay ssauisng

S9A19IQO

$3A1392(qQ aulyaq

S3[qeIDAl[2(SISA|RUY
$19npoid pasesuiduy 9s19A9Yy
Sj[nsay SisAjeuy A31j1qisea
SIvV

sjuswalinbay ssauisng

ueid 199{014 Suudou1Fuany
syuauodwo)) S[y pautjaseq

[32a) (NONS-D) lenuejy 103e19d()/195(] 2IEMYOS PIEPIIOSUOD
[32@] (@ss-D) wowmooq woddng asemyjos pajeprjosuo))

10410dd dNI143a

SATAVINNSNOD

SITIVIIAITIA

ALIAILDV

sanlAROY 193014 suys(10j SI[qRWINSUOY) PUB SO[qRISAID [-€ S[qeL

1C

S1ONpoId B1R(PIIoeIXY
SIONPOLJ SINONNSEIU] [ESIUYID] PIIORIIXF
SIONPOIJ UCLIBIUSWNDO(] PIIVRHXY
S10NpO1J 2IBMJOS PIIORIIXY

sjuowaxnbay ssaulsng

SUOISIA®Y 10NPOIJ PIPUSILIODY
S19Npo1d paIssuIduy 9S19ASY
SJosSy 9snay Sleplpue)

s1onpoId parorIIXy 2[10U0IY

SUOISIAQY 10NPOIJ PIPUSWWIOIIY
sjusuodwio) STy paurjeseg

sjonpoig
SINJONISEIJU] [BOIUYDD] POIORNXT

amjonaselju] fesiuyos], azAfeuy

SUOISIADY 10NPOIJ PIPUSLWOISY
siusuoduwio)) Sy paurjdseq
SJOSSY O[qesnay

$1oNpoId BIR(] PAORIXT

elRQ 9ZA[RUY

SUOISIAQY 1ONPOLJ PSPUSW0DIY
sjusuodwo)) Sy pauraseyq
S10ssy 3[qesnay

S1ONpoIJ dIeMYyOS pIjoenxy

sremyos uonestjddy azAjeuy

SUOISIASY 19MPOIJ PAPUSIUIONDY
susuodwo) STV pautjaseq

SIONPOIJ UOLBIUSWINDO(] PAORIXT

UONRUIWINSO(] 9ZAJeuy

sjuouoduwo)) Sy paurjeseg
5}9sSY 9[qesnay]
sjuawaInbay ssauisng

s1onpold PaIosuIBuy 9s1aAsy

$195SY 9snay SIEpIpuB)

(IWONS-D) [enuely Jojerad()/19s() aIeMyoOS PoIeplIOSU0))
(AsS-D) woumso uoddng oremyos pajepljosuo)
(@¥4S-D) waumdo suawarinbay aremyos pajepjosuo)
(dS-D) ueld aremyos pajepijosuo)

(Ags-)) wownsog udisa 2IeMyoS Pjepljosuo))

YTANIONH ISYIATE

SATEVINNSNOD

SHTEVIIAITAA

ALIALLDV

SOBIAIOY 199UISUY 9SI0A3Y 10j SI[qRUINSUO,) PUE SOIRISAIR(] "Z-€ 9[qBL

a4

sipuodwo)) uoneidauj
sauodwo)) pling
51955y 2[qesnay

sa|qelAl[2(SisAleuy

Sjnsay 183 -
['A9y] (QLS-D) uowns0(1591 21eMOS PIIEPIOSuo)

JjenjeA pue 1S9,

s1nsay Isa]
swsuodwo)) pjing

S1nsay uoneidau]

$19SSY/ 9|qesnay sjusuodwo)) uoneldau] eido]
sjnsay 159
sjuouodwo)) uonerdaju| sjnsay png
susuodwo)) udisoqg sjusuodwo)) pjing
S12SSY 2jqesnay ['a2y] (WONS-D) Ienuepy Jojelad(y/1asn) 21emoS parepl{osuo) plng
SI[QEIDAID(] SISAJeuy sjnsay udisaQg
sjnsay pring sjuduodwo)) udisa(-
$)9SSY/ 9|qesnay ['A2y] (dS-D) ue[d 2Iemyos paiepi|osuo))
$19npo1d paldduIduy 9s19A0Y ['a9y] (@@S-D) wowndo(udisa aIemyos pAaepIosuo) ugisaqg
S)NsSoY 159
s3nsay udisoq
$)12SSY 2[qesnoy S3|qRIOAND(] SISA|RUY -
$19NPO1J PaIddUIBUY 3SIAY [32@] (@1S-D) wdwndog 1531 21eMmyoS PAIepIosuod
sjudwalinbay ssaursng (QYS-D) wawndoq swawalinbay s1emyos palepljosuo) azA[euy

SIOSSY o[qesnay
$19Npolg paiauiSuyg 2si2AdY

sjuswalnbay ssaulsng

S1aSSY asNaY 21EPIpUBR)
WDISAS pal1asu1Suaay

(WONS-D) [enuepy 101e1ad()/I9S() 91BMYOS PAIEPI{OSU0)
(QL1S-D) uaWns0(q 1591 21eMYyos pPaIepljosuo)

['Asy] (@SS-D) woumsoq Hoddng a1emyos paiepljosuc)

YFIANIONT AIVMYOL

SITVINNSNOD

SA7aVdIAITad

ALIAILDV

SOLIALOY JosurSuyg plemloq JOJ SO[QELINSUC)) PUE SI|qBIdAIP["¢-€ d]qel

The tables on the previous pages also provide a template for listing the expected
products from each of the lower-level software reengineering activities in the project. Each

lower-level activities should be added to the tables and their expected products listed.

3.3.2 Order Activities in Sequence. The Software Systems Reengineering Process Model
outlines the high-level activities of software reengineering. Each individual project may
implement all or part of these activities. The activities and their relationships with each other
are not related to, concerned with, or limited by time. Activities may be dependent: one
activity requires the product of another activity to complete its product. Other activities may
have no relationship and can potentially be performed in parallel. This step orders the
activities in a sequence to determine a time relation for the lower-level activities.

3.4 Map Activities To Personnel. This step assigns the appropriate personnel to each

activity. More than one person may be required to perform the activity. How individuals
work together may influence how work teams are identified and structured. Consideration
should be given to personnel experience and skill in the activities, tools, and the system
components involved. Proximity of people to one another may impact their ability to perform
the activity.

The skills of personnel are improved through training. All personnel should be trained
in the latest advances in modern software engineering principles supported by processes,’
tools, and languages. Experience provides personnel with the knowledge of the current
system environment, but training is needed to insure a completed understanding of the target
environment for supporting the reengineered system and the technology available for
migrating to that environment.

3.5 Map Activities To Resources. Assign resources required for performing each activity.

Available resources for performing the software reengineering may be limited to those
currently available in the organization. These resources are mapped to the activity which they
best support. These resources include personnel, computer, reusable components, and

available technology for supporting the software reengineering effort.

23

The experience and skill of the personnel utilizing these tools should complement the
tools capabilities to automate the activity. The technical complexity of the tools also impacts
the personnel's ability to use the tool and implement the activities. The tools for completing
the activity must be available to the personnel. The correct platform and documentation for

using these tools must be readily available.

Modemn software engineering is supported through a variety of methodologies and
tools which were not available when the existing engineering environments in most
organizations were established. It is important that alternative technologies be examined for
their applicability in the organization's business process. A plan for integrating these
technologies into the organization should be established which includes training for all

effected personnel.

3.6 _Schedule Time For Each Activity. Estimate the duration of each activity in units of time

that can be costed and staffed. Many of the high-level activities in software reengineering
have never been performed in most organizations. However, these activities are broken down
into the lowest level activities which may be compatible with simple software engincering
activities. The time for performing these activities is comparable with many system support
activities. Experience in each individual organization should be used for scheduling time for

these software reengineering activities.

3.7 Estimate Costs Per Activity. For each activity estimate the cost and budget. The lowest

level software reengineering activities which were broken down and compared to software
engineering activities in Step 6 of this Guide can also be used to estimate the costs. The cost
for these activities is available from current system support experience in each individual

organization and should be used for estimating cost for the software reengineering activities.

24

3.8 List Risks Which Could Impact Plan. For each activity list the issues which could

potentially impact the performance of each activity. For example, list the factors which could
alter both the start and completion date of that activity. Identifying the potential problems
ahead enables the manager to initiate preemptive action. Alternative scenarios based on these

problems should be outlined. There are many types of risks including the following [Youl90,
p25]:

- hardware or software problems

- customer requirement inconsistencies

- key staff may leave

- application pitfalls

- external suppliers

- availability of staff

- inexperienced staff in modern software engineering principles,

tools/languages

The Software Reengineering Risk Taxonomy [CIM93c] assists project managers in

identifying potential hazards when performing software reengineering.

While risk identification is key to a project plan, managing the risks when they
become a reality can be very difficult. Planning to manage these risks is essential to
mitigating the effect on the success of the project. Steps can be posed for avoiding risks once
they are identified. There are several sources for managing risk, including the following steps

outlined by B. Boehm in Software Risk Management [Boeh89].

25

I. Risk Management

B. Risk Control
1. Risk Management Planning
. buying information
. risk avoidance
. risk transfer
. risk reduction
. risk element planning
. risk plan integration

A. Risk Assessment
1. Risk Identification
a. checklists
b. decision driver analysis
c. assumption analysis
d. decomposition

-0 o 6 o ®

2. Risk Resolution
a. prototypes
b. simulations
c¢. benchmarks
d. analyses
e. staffing

2. Risk Analysis
a. performance models
b. cost models
c. network analysis
d. decision analysis
e. quality factor analysis

3. Risk Prioritization 3. Risk Monitoring

a. risk exposure
b. risk leverage
c. compound reduction

a. milestone tracking
b. top-10 tracking
c. risk reassessment

d. corrective action

Three sample risk areas include introducing new technology, customer requirement
inconsistencies, and the inexperience of staff in principles/tools/languages. The following
examples show how a risk area is identified and the impact described in the project plan.
Plans for mitigating each risk identified in the project plan should be explored and also stated
in the project plan. Notice the statement describing the risk mitigator in each of these

examples.

Example Risk Area #1: Introducing New Technology:

Example Risk Statement: "This reengineering project requires that the reenginecred
system reside in a client/server environment. Personnel have no experience in
client/server technology. The impact of moving to this type of environment is

unknown at this time.

26

Risk Mitigator: Training in client/server technology is suggested for all project team
members. Reverse engineering will analyze the current hardware platform capabilities
and forward engineering will compare these capabilities to a client/server

environment."

Example Risk Area #2: Customer Requirement Iconsistencies:

Example Risk Statement: "Current customer requirements are not being met due to
incompatible requirements from multiple customers, unfulfilled change requests, and
perceived unknown requirements. The inability to meet customer requirements may
result in customers abandoning this system.

Risk Mitigator: A joint application design/development (JAD) approach is suggested

with representatives from customers, maintainers, and reengineering project personnel."

Example Risk Area #3: Inexperience of staff :

Example Risk Statement: "Current staff has no formal training or experience with the
Ada programming language. Without experience there will be a risk is generating
quality Ada code manually and an inability to adequately evaluate the automatically
generated Ada code. Without training this risk is even greater.

Risk Mitigator: Ada training for 6-8 weeks is suggested for all affected personnel.”

3.9 Plot Information Relative To Time. The schedule, mapping of personnel, and mapping

of resources can be graphed using Gantt charts, a popular technique for representing project
management information. The following is a sample Gantt chart for the high-level activities
within software reengineering. The lower-level activities should be added to this chart for

each individual project.

27

8¢

Suruuerq 103fo1g SunssuiSusay aiemyos 10y peyd nuen sjdweg ¢ 23]

[9]en|eAg pue jsal
— ajesbajug
|

piing

ubiseq

azAeuy

Jaaulbug piemuo

sjonpoid
paloeJix3 9]1ouodsy
ainjoniiseyu)
|ealuyoey ezAjeuy
ejeq azAjeuy
2JBM0S
uonesljddy azAjeuy

uolejuawWNo0Q 9zAleuy

Jaaulbug esienay

ue|d j08l01d
Buusauibussy aulag

aujaseg Ajnusp|

soAl08l(qQ suyeq
jo8loid suyaq

09c 0ee 00 0L Ove ol O08L O0SL 02t 06 09 0f 0 @®PPue yoemp Ajanoy

olep els

Uey) puen sjdwex3
ue|d 108loi4 Buussulbussy ailem)os

3.10 Mark Critical Success Factors On Timeline. List the critical points in the software

reengineering project which may indicate the success of the project. These are essential to
monitoring the progress of the project. Using the timeline, note these points on the schedule.
On a separate page for each point describe the status of the project at that point, including

costs, products, and other indicators of progress.

Measures of success were outlined as part of Step 1 in this Guide. In this step, these
measures are considered in detail. Minimal deviations from the schedule and acceptable cost
differentiations should be identified. Overall performance improvements and qualitative
advancements should also be identified. Benchmarks of the current system support
environment and performance are necessary for comparison to measures taken throughout and

at the end of the software reengineering effort.

A successful software reengineering effort has several attributes. These attributes are
often not measurable until the completion of the effort. Identifying the critical success factors
throughout the duration of the project allows for modifications to be made to the project plan

and increase the likelihood of success.

The following example identifies the objective and its related critical success factor

(CSF) which would be included in the project plan.

If your objective was: "An objective of this reengineering project is to decrease time

spent on making each change by a minimum of fifty-percent."

Then, a CS would be: "An increase in software productivity of a minimum of

twenty-five percent is necessary to achieve critical success."

29

3.11 Plan to Capture Lessons Learned. Many of the activities identified throughout the first

steps in this Guide are continuous activities which should be performed to constantly improve
the software products. By performing these activities repeatedly and improving the product,
the process itself can be improved. Individual needs of each organization can be addressed
through subtle improvements in the process. Use the experience the establish process
improvement goals. Outline a framework for achieving these goals in this section of the

project plan.

This section of the project plan should define a process for capturing lessons learncd.
It is not enough to state in the project plan that this will be done. A specific plan on how
this will be accomplished must be described in this part of the plan. For example, establish a
biweekly report that identifies key lessons learned during that phase of the project. In this
part of the project plan include a copy of the report template which will be used by the

project team. Mark on the time line when these reports are due.
This part of the project plan should also identify other projects in the organization

which are potential candidates for benefitting from the experience gained during this project.

Establish a mechanism for performing technology transition within the organization.

3.12 Plan_to Measure and Monitor. Methods and guides for measuring both products and

process are defined in several sources. The DoD defined a set of Core Measures which
provide fundamental information for project planning, project management, and software
process improvement. These measures include size, effort, and schedule. The Center for
Software's Metrics Program is examining how these core measures impact software
reengineering and reuse activities. The Metrics Program is also directing a number of DoD
organizations in the collection and analysis of these measures. Monitoring these sites and
other activities supports the development of a Metrics Architecture and the initiation of a

DoD-wide metrics program.

30

[Basi93]

[Blum92]

[Boeh89]

[CFSW94]

[CIM93a]

[CIM93b]

[CIM93c]

[CMU92]

[DSD93]

[Hump89]

REFERENCES

V.R. Basili, Software Modeling and Measurement: The Goal/Question/Metric
Paradigm, Institute for Advanced Computer Studies, Department of Computer
Science, University of Maryland, developed under NASA/GSFC contract NSG-
5123 and AFOSR contract 90-0031, 1993.

B.I. Blum, Software Engineering: A Hollistic View, Oxford University Press,
1992.

B. W. Boehm, Software Risk Management, IEEE Computer Society Press,
Washington, DC, 1989.

Software Systems Reengineering Process Model: Version 2.0, Center for
Software, September 1994. :

Information System Criteria for Applying Software Reengineering, Center for
Information Management, May 1993.

Software Systems Reengineering Process Model: Version 1.0, Center for
Information Management, August 1993.

Software Reengineering Risk Taxonomy, Center for Information Management,
September 1993.

Software Measurement for DoD Systems: Recommendations for Initial Core
Measures, TR CMU/SEI-92-TR-19, September 1992.

Deputy Secretary of Defense memorandum, October 13, 1993, subj:
"Accelerated Implementation of Migration Systems, Data Standards, and

Process Improvement."

W.S. Humphrey, Managing the Software Process, Software Engineering
Institute, Addison-Wesley Publishing Company, 1989.

References-1

[Pres87]

[Whito0]

[Youl90]

R. S. Pressman, Software Engineering: A Practitioner's Approach, McGraw-
Hill, Inc., Second Edition, 1987.

N. Whitten, Managing Software Development Projects, John Wiley and Sons,
Inc., 1990.

D.P. Youll, Making Software Development Visible: Effective Project Control,
John Wiley and Sons, Inc., 1990

References-2

Appendix A
Project Planning Templates

The following templates have been prepared to aid in the documentation of the
information required in a Software Reengineering Project Plan as defined in this guide.
These templates should be used to outline the initial project plan for any software
reengineering effort. Each step in the plan which is outlined in Section 3.0 of the
Software Reengineering Project Planning Guide, Version 2.0 corresponds to a set of
templates on the following pages. For example, Section 3.1 in the Guide corresponds to
Step 1. State Objectives. Please refer to the Guide for additional information on how to
use these templates. These pages can be pulled out of this appendix and duplicated for
use in project planning.

(This page was intentionally left blank.)

Spensoring Organization:

Project Name:

Software Reengineering Project Plan

This project plan is composed of the following twelve parts:

PN R -

STATE OBJECTIVE(S)

IDENTIFY BASELINE SYSTEM(S)

LIST ACTIVITIES

MAP ACTIVITIES TO PERSONNEL

MAP ACTIVITIES TO RESOURCES
SCHEDULE TIME FOR EACH ACTIVITY
ESTIMATE COSTS PER ACTIVITY

LIST RISKS WHICH COULD IMPACT PLAN
PLOT INFORMATION RELATIVE TO TIME
MARK CRITICAL SUCCESS FACTOR POINTS
PLAN TO CAPTURE LESSONS LEARNED
PLAN TO MEASURE AND MONITOR

1. State Objective(s). The objectives for the software reengincering project may include
those objectives for using the system, supporting the system, and those objectives for
utilizing software reengineering technology. The activity of defining these objectives is
described in the Software Systems Reengineering Process Model as Define Objectives
[CIM93b]. {The following template provides a form for documenting the information
required in this part of the project plan:}

STATE OBJECTIVES

Objective #1:
Viewpoint:
Issues:
Metric(s):

Objective #2:
Viewpoint:
Issues:
Metric(s):

2. Baseline System(s). The following configuration items comprise the current automated

information system. This is not an analysis of these items, only an inventory of existing

system components. These items include, but are not limited to: any associated

documentation, application software, data, and technical infrastructure.

The activity of

identifying the baseline is described in the Software Systems Reengineering Process
Model as Identify Baseline [CIM93b]. {The following text supplements the description of

this activity in the Process Model.}

BASELINE IDENTIFICATION

Identify Existing Application Software:

Name of software item:
Language:

Size:

Description:

Associated Documentation:
Identify Existing Data:
Name of each data element:

Description:

Associated Documentation:

Identify Existing Technical Infrastructure:

Names of components:
Description:

Associated Documentation:

(This page was intentionally left blank.)

3. List Activities. The high-level activities are outlined in the Software Systems
Reengineering Process Model [CIM93b]. In this step, these activities should be broken
down into lower level activities which can be costed and mapped to resources, including
computer and personnel resources. These activities are then ordered in sequence where
possible and potential parallelism identified. These activities form the basis of the
reengineering strategy as described in the Software Systems Reengineering Process Model
as Define Strategy [CIM93b]. {The following provides a template for outlining the lower-
level software reengineering activities in the project:} '

LIST ACTIVITIES

1. Reverse Engineer

A. Analyze Documentation
1.
2.
3.

B. Analyze Application Software
1.
2.
3.

C. Analyze Data
1.
2.
3.

D. Analyze Technical Infrastructure
1.
2.
3.

E. Reconcile Extracted Products
1.
2.
3.

LIST ACTIVITIES (cont.)

2. Forward Engineer

A. Analyze
1.

D. Integrate
1.
2.
3.

E. Test and Evaluate
1.
2.
3.

(This page was intentionally left blank.)

4. Map Activities To Personnel. This step assigns the appropriate personnel to each activity.
More than one person may be required to perform the activity. The activity of mapping
activities to personnel is described in the Software Systems Reengineering Process Model
as Allocate Resources [CIM93b]. {The following provides a template for mapping
personnel to the lower-level software reengineering activities in the project:}

MAP ACTIVITIES TO PERSONNEL

1. Reverse Engineer

A. Analyze Documentation
1.
2.
3.

B. Analyze Application Software

1.
2.
3.

C. Analyze Data
1.
2.
3.

D. Analyze Technical Infrastructure

1.
2.
3.

E. Reconcile Extracted Products

1.
2.
3.

Personnel:

MAP ACTIVITIES TO PERSONNEL (cont.)

2. Forward Engineer

A. Analyze
1.

D. Integrate
1.
2.
3.

E. Test and Evaluate
1.
2.
3.

Personnel:

(This page intentionally left blank.)

5. Map Activities To Resources. Assign resources required for performing each activity.
Available resources for performing the software reengineering may be limited to those
currently available in the organization. These resources are mapped to the activity which
they best support. These resources include computer resources, reusable components, and
available technology for supporting the software reengineering effort. The activity of
mapping activities to resources is described in the Software Systems Reengineering
Process Model as Allocate Resources [CIM93b]. {The following provides a template for
mapping resources to the lower-level software reengineering activities in the project:}

5. MAP ACTIVITIES TO RESOURCES

1. Reverse Engineer Resource:

A. Analyze Documentation
1.
2.
3.

B. Analyze Application Software
1.
2.
3.

C. Analyze Data
1.
2.
3.

D. Analyze Technical Infrastructure
1.
2.
3.

E. Reconcile Extracted Products
1.
2.
3.

Quantity:

5. MAP ACTIVITIES TO RESOURCES (cont.)

2. Forward Engineer

A. Analyze
1.

D. Integrate
1.
2.
3.

E. Test and Evaluate
1.
2.
3.

Resource:

Quantity:

(This page intentionally left blank.)

6. Schedule Time For Each Activity. Estimate the duration of each activity in units of time
that can be costed and staffed. Many of the high-level activities in software reengineering
have never been performed in most organizations. However, these activities are broken
down into the lowest level activities which may be compatible with simple software
engineering activities. The time for performing these activities is comparable with many
system support activities. Experience in each individual organization should be used for
scheduling time for these software reengineering activities. The activity of scheduling
time for each activity is performed in the Software Systems Reengineering Process Model
in Define Reengineering Project Plan [CIM93b]. {The following template provides a
form for documenting the information required in this part of the project plan:} ‘

6. SCHEDULE TIME FOR EACH ACTIVITY

1. Reverse Engineer

A. Analyze Documentation
1.
2.
3.

B. Analyze Application Software
1.
2.
3.

C. Analyze Data
1.
2.
3.

D. Analyze Technical Infrastructure
1.
2.
3.

E. Reconcile Extracted Products
1.
2.
3.

Time(Days/Weeks/Months):

6. SCHEDULE TIME FOR EACH ACTIVITY (cont.)

2. Forward Engineer Time(Days/Weeks/Months):

A. Analyze
1.
2.

D. Integrate
1.
2.
3.

E. Test and Evaluate
1.
2.
3.

(This page intentionally left blank.)

7. Estimate Costs Per Activity. For each activity estimate the cost and budget. The lowest
level software reengineering activities which were broken down and compared to software
engineering activities in Step 6 of this Guide can also be used to estimate the costs. The
cost for these activities is available from current system support experience in each
individual organization and should be used for estimating cost for the software
reengineering activities. The activity of estimating costs is performed in the Software
Systems Reengineering Process Model in the activity Define Reengineering Project Plan
[CIM93b]. {The following template provides a form for documenting the information

required in this part of the project plan:}

7. ESTIMATE COSTS PER ACTIVITY

1. Reverse Engineer

A. Analyze Documentation
1.
2.
3.

B. Analyze Application Software
1.
2.
3.

C. Analyze Data
1.
2.
3.

D. Analyze Technical Infrastructure
1.
2.
3.

E. Reconcile Extracted Products
1.
2.
3.

Estimated Cost:

7. ESTIMATE COSTS PER ACTIVITY (cont.)

2. Forward Engineer Estimated Cost:

A. Analyze
1.

D. Integrate
1.
2.
3.

E. Test and Evaluate
1.
2.
3.

8. List Risks Which Could Impact Plan. For each activity list the issues which could
potentially impact the performance of each activity. For example, list the factors which
could alter both the start and completion date of that activity. Identifying the potential
problems ahead enables the manager to initiate preemptive action. Alternative scenarios
based on these problems should be outlined. The activity of identifying risks is performed
in the Software Systems Reengineering Process Model in the activity Define
Reengineering Project Plan [CIM93b]. {The following template provides a form for

documenting the information required in this part of the project plan:}

8. LIST RISKS WHICH COULD IMPACT PLAN

Risk Area:
Risk Statement:

Risk Mitigator:

Risk Area:
Risk Statement:

Risk Mitigator:

9. Plot Information Relative To Time. The schedule, mapping of personnel, and mapping of
resources can be graphed using Gantt charts, a popular technique for representing project
management information. The following is a sample Gantt chart for the high-level
activities within software reengineering. The lower-level activities should be added to this

chart for each individual project.

9. PLOT INFORMATION RELATIVE TO TIME

62-Y

ue|d 08(0id

Bunesuibuasy suyaq

eufieseq Ajpuapl

seAnoe(qQ euyeQ

weloid euysq

09€ 0ge 00E

0.2

oe Ol 081 oSt (1749 06 09 0g 0| &P pua
618D LESs

uogeinp

Aoy

:owe| 109loid

ue|d 109lold Bunesuibussy aiemyog

0g-V¥

SINPOId PSIOEJIIXT 81IJU0d8Y

8.NJOrUISE4U| [BJILYOS] 8ZAjE

eleQ ezAjeuy

eJemyos uopediddy ezAjeuy

uOJIBIUBWIND0(8ZA[BUY
Jeauibug esieasy

Uy

09 0ee 00t

02

ove [¢]¥4 08l oSt oci 06 09 oe 0| SEPPUS iogeinp
018 LElS

Kungoy

:aweN 109lold
ue|d 108loi4 Buussuibusay aiem)yos

TE-Y

ajenjeay pue jsal

sjesbajy

pling

uBjseq

ozAleuy
1eouibuz premiog

09€ 0ee 00E

0.2

ok Ole 08l OSE O2t 06 09 oe 0| S¥P PUS |yogeinp
688D LIS

Koy

:owep 1098foid
ue|d 108lo.d Bunesuibusay aiemyos

10. Mark Critical Suecess Factors On Timeline. List the critical points in the software
reengineering project which may indicate the success of the project. These arc essential
to monitoring the progress of the project. Using the timeline, note these points on the
schedule. On a separate page for each point describe the status of the project at that

point, including costs, products, and other indicators of progress.

10. MARK CRITICAL SUCCESS FACTORS ON TIMELINE

Related Objective:
Critical Success Factor:

Scheduled Completion Date:

Related Objective:
Critical Success Factor:

Scheduled Completion Date:

Related Objective:
Critical Success Factor:

Scheduled Completion Date:

11. Plan to Capture Lessons Learned. Many of the activities identified throughout the first
steps in this Guide are continuous activities which should be performed to constantly
improve the software products. By performing these activities repeatedly and improving
the product, the process itself can be improved. Individual needs of each organization can

be addressed through subtle improvements in the process.

Outline a plan to incorporate the lessons learned from this project into other aspects of the

organization's work:

11. PLAN TO CAPTURE LESSONS LEARNED

12. Plan to Measure and Monitor. Methods and guides for measuring both products and
process are defined in several sources. The Software Engineering Institute (SEI) has
defined a set of core measures to provide fundamental information for project planning,
project management, and software process improvement [CMU92]j. These measures arc
size, effort, defects, and schedule. The Center for Software's Metrics Program is
examining how these core measures impact software reengineering and reuse activitics.
The Metrics Program is also directing a number of DoD organizations in the collection
and analysis of these measures. Monitoring these sites and other activities support the

development of a Metrics Architecture and the initiation of a DoD-wide metrics program.

Outline a plan to continue measuring and improving the software engineering

environment:

12. PLAN TO MEASURE AND MONITOR

